

Computing Curricula 2004

Overview Report
including

A Guide to Undergraduate
Degree Programs in Computing

for undergraduate degree programs in

 Computer Engineering
 Computer Science

 Information Systems
 Information Technology
 Software Engineering

Joint Task Force for Computing Curricula 2004

A cooperative project of

The Association for Computing (ACM)
The Association for Information Systems (AIS)

The Computer Society (IEEE-CS)

STRAWMAN DRAFT

1 June 2004

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 2 -

Joint Task Force for
Computing Curricula 2004

 Affiliation CC Representative
Russell Shackelford (chair) # + * ACM CS2001
Stanford University

Lillian (Boots) Cassel CAC/CSAB ---
Villanova University

James Cross * IEEE-CS CS2001
Auburn University

Gordon Davies + * BCS, ACM CS2001
Consultant

John Impagliazzo # + * ACM CE2005
Hofstra University

Reza Kamali * ACM-SIGITE IT2005
Purdue University (Calumet)

Eydie Lawson ACM-SIGITE IT2005
Rochester Inst. of Technology

Richard LeBlanc ACM SE2004
Georgia Tech

Andrew McGettrick # + * BCS, ACM CS2001/SE2004/CE2004
University of Stratclyde

Robert Sloan * IEEE-CS CS2001/CE2004
University of Illinois (Chicago)

Heikki Topi * AIS IS2002
Bentley College

Martin van Veen IFIP ---
Open University of the Netherlands

Legend:
Author
+ Editor
* Member of the Focus Group

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 3 -

Contents

Members of the CC2004 Task Force ... 2

Contents ... 3

Summary ... 5

Part One: The Overview Report on Computing Curricula 2004

1. Introduction... 7

1.1. Purpose of this report ... 7
1.2. Scope of this report ... 7
1.3. Background and history ... 8
1.4. Guiding principles ...11

2. The Computing Disciplines ..13

2.1. What is computing? ..13
2.2. The landscape of computing disciplines...13

2.2.1. Before the 1990s..13
2.2.2. Significant developments of the 1990s ...14
2.2.3. After the 1990s ..16

2.3. Descriptions of the computing disciplines..17
2.3.1. Computer engineering ...17
2.3.2. Computer science ..17
2.3.3. Information systems ..18
2.3.4. Information technology ...18
2.3.5. Software engineering...19

2.4. Conceptual snapshots: Graphical views of the computing disciplines20
2.4.1. Computer engineering ...22
2.4.2. Computer science ..23
2.4.3. Information systems ..24
2.4.4. Information technology ...25
2.4.5. Software engineering...26

3. Degree programs and expectations of graduates ...27

3.1. Curriculum summaries: A tabular comparison of computing degree programs.........27
3.1.1. What the tabular view represents ..29
3.1.2. Using the table: two related examples...30

3.2. Degree outcomes: Comparing expectations of program graduates31
3.3. International considerations..33
3.4. The pace of change in academia: The disciplines and the available degrees33

3.4.1. Computer engineering ...34
3.4.2. Computer science ..35

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 4 -

3.4.3. Information systems ..36
3.4.4. Information technology ...37
3.4.5. Software engineering...38

3.5. The pace of change in the workplace: The degrees and career opportunities39
3.6. Shared identity: The common requirements of a computing degree40

4. Conclusion ..42
4.1. Institutional considerations...
4.2. Curricula and accreditation...
4.3. Future considerations..

Part Two: The Guide to Undergraduate Degree Programs in Computing

Summary ..

1. Introduction...

1.1 Purpose ..
1.2 Scope ..

2. The Computing Disciplines ..
2.1 The big arena: What is computing? ...
2.2 Descriptions of the computing disciplines ...

2.2.1 Computer engineering..
2.2.2 Computer science...
2.2.3 Information systems...
2.2.4 Information technology..
2.2.5 Systems engineering ..

2.3 Snapshots: A graphical comparison of the computing disciplines
2.3.1 Computer engineering..
2.3.2 Computer science...
2.3.3 Information systems...
2.3.4 Information technology..
2.3.5 Software engineering ...

3. Student Considerations ...
3.1 The Challenges and the Excitement of Computing..
3.2 Career Opportunities ..
3.3 The impact of degree choice on your future ..

Appendix A: Glossary of topics...

References ...

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 5 -

Summary

Computing has become fundamental to the education of those who will participate in modern
society. It provides the infrastructure by which we communicate, do our work, conduct our
business, and manage our affairs. Computing has dramatically influenced progress in science,
engineering, business, and other avenues of human endeavor. In modern times, nearly everyone
needs to use computers, and many will want to study computing in some form. Computing will
continue to present challenging career opportunities, and those who work in computing will have
a crucial role in shaping the future of society.

It is important for society that the computing disciplines attract quality students from a broad
cross-section of people and prepare them to be capable and responsible professionals, scientists,
and engineers. Over the years, the professional and scientific computing societies based in the
U.S. have taken a leading role in providing guidance and support for higher education in various
ways, including the formulation of curriculum standards and guidelines. Several reports that
define and update guidelines for computing curriculum have appeared over the past four decades.
Recent efforts have targeted international participation, reflecting the need for the leading
professional organizations to become truly global in scope and responsibility.

Early in the process that produced Computing Curricula 2001 (CC2001), it became clear that the
dramatic expansion of computing that occurred during the 1990s made it no longer reasonable to
produce curriculum reports just for computer science and information systems, the two
disciplines for which the reports existed previously. Instead, CC2001 called for a set of reports
to cover the growing family of computing-related disciplines, including a volume for each of
computer science, information systems, computer engineering, and software engineering. It was
also clear that new computing disciplines would emerge over time and require their own
recommendations. Since the publication of CC2001, information technology has joined the
family of computing disciplines and now requires its own curriculum volume.

The CC2001 report also called for an Overview Report to summarize the content of the various
discipline-specific reports. This document is the first edition of that Overview Report. Its goal is
to provide perspective for those in academia who need to understand what the major computing
disciplines are and how the respective undergraduate degree programs compare and complement
each other. This report summarizes the body of knowledge for undergraduate programs in each
of the major computing disciplines, highlights their commonalities and differences, and describes
the performance characteristics of graduates from each kind of undergraduate degree program.
To create this report, we have examined curriculum guidelines for undergraduate education and
have referred to the computing professions and other supporting information as necessary. We
have not focused on graduate education or on the identities of the computing research
communities. College-level faculty, administrators, and other community leaders are the
audience for this report. It outlines the issues and challenges they will face in shaping the
undergraduate programs that will serve their constituents and their communities.

In addition, this report includes a Guide that offers guidance to a broader audience, including
prospective students, their parents and guidance counselors, and others who have reason to care

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 6 -

about the choices that await students who move from high school to college. It provides briefer
characterizations of the computing disciplines and profiles factors that prospective students
should consider when choosing an area of computing study.

This report is the result of an unprecedented cooperative effort among the leading computer
societies and the major computing disciplines. Because things change rapidly in computing, the
reports will need frequent updates. Within this report, you will learn how to determine if this is
the most recent edition and, if it is not, how to download the newest one.

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 7 -

PART ONE

Chapter 1: Introduction

1.1. Purpose of this report
This report provides an overview of the different kinds of undergraduate degree programs in computing
that are currently available and for which curriculum standards are now, or will soon be, available.
Teachers, administrators, students, and parents need this report because computing is a broad discipline
that crosses the boundaries between science, engineering, and professional practice. In reality, computing
consists of several disciplines. Many respected colleges and universities offer undergraduate degree
programs in several of computer science, computer engineering, information systems, information
technology, software engineering, and more. These computing disciplines are related, but are also quite
different from each other. The variety of degree programs in computing presents prospective students,
educators, administrators, and other community leaders with important choices about where to focus their
efforts.

Several questions naturally arise: What are these different kinds of computing degree programs? How are
they similar? How do they differ? How can I tell what their names really mean? Which kinds of
programs should our local college offer? And so on. These are all valid questions, but to anyone
unfamiliar with the breadth of computing, the responses to these queries may be difficult to articulate.
This report may help in articulating some answers.

We have created this report to explain the character of the various undergraduate degree programs in
computing, and to help you determine which of the programs are most suited to particular goals and
circumstances. We intend this report to serve a broad and varied audience. We believe it can be of help
to:

• University faculty and administrators who are developing plans and curricula for computing-related
programs at their institutions

• Responsible parties in public education, including boards of education, government officials, elected
representatives, and others who seek to represent the public interest

In addition, we have included in this report A Guide to Undergraduate Degree Programs in Computing
(henceforth the Guide) with the intent to serve:

• Students who are trying to determine which path of computing study fits their interests and goals

• Parents, guidance counselors, and others who are trying to assist students in their choices

• Professionals who are considering how to continue their education in a rapidly changing, dynamic
field

• Anyone who is trying to make sense of the wide range of undergraduate degree programs in
computing that are now available.

1.2. Scope of this report
The foundation of this report is the set of curriculum standards that exist for undergraduate degree
programs in each of the five major computing-related disciplines mentioned earlier: computer

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 8 -

engineering, computer science, information systems, information technology, and software engineering.
For each of these disciplines, a curriculum report already exists or will soon exist. Each report represents
the best judgment of the relevant professional, scientific, and educational associations, and serves as a
definition of what these degree programs should be and do. Those five reports provide the basis for this
report. In addition, we have referred to the computing professions and other supporting information as
necessary. We have not focused on graduate education or on the identities of the computing research
communities.

The remainder of this report includes the following:

• In Chapter 2, we characterize each of the five major computing disciplines.

• In Chapter 3, we flesh out the characteristics of each of these five kinds of degree program and
compare them to each other. We also compare and contrast the kind of professional capabilities
expected of the graduates of each kind of degree program.

• In Chapter 4, we conclude by alerting educators, administrators, and other responsible parties on
some issues that may emerge in the creation of new computing programs.

• In Part Two, we include a Guide. This is a short, standalone document that will be published
separately from, and distributed more widely than, the whole of this report. In it, we provide
information for prospective students, and for those who advise them, to help them make well-
informed choices.

Computing itself will continue to evolve. In addition, new computing-related disciplines are likely to
emerge. As we update the existing discipline-specific reports and as additional reports for new computing
disciplines emerge, you can expect to see updated versions of this report as well. To find out if this
document (CC-Overview) is the most recent edition of the Overview Report on Computing Curricula, go
to <http://www.acm.org/education/>. There, you will be able to determine if a newer version exists. If it
has, you may download the newest version from that site.

1.3. Background and history
Over the last forty years, four major organizations in the US have developed computing curriculum
guidelines for colleges and universities:

• The Association for Computing Machinery (generally called “the ACM” or “the Association for
Computing”) is a scientific and professional organization founded in 1947. It is concerned with the
development and sharing of new knowledge about all aspects of computing (the word “machinery” in
its name is just a historical artifact). It has traditionally been the professional home of computer
scientists, who devise new ways of using computers and who advance the science and theory that
underlies both computation itself and the software that enables it. The ACM began publishing
curriculum recommendations in 1968.

• The Association for Information Systems (generally called “AIS”), founded in 1994, is a global
organization serving those academics who specialize in Information Systems. AIS is affiliated with
Society for Information Management in the U.S., the membership of which consists of IS executives
and managers. AIS began providing curriculum recommendations in cooperation with ACM and
AITP in 1997.

• The Association for Information Technology Professionals (often referred to as “the AITP”) was
founded in 1951 as the National Machine Accountants Association. Beginning in 1962, it became the
Data Processing Management Association (or DPMA). It adopted its present name in 1996. AITP
focuses on the professional side of computing, serving those who use computing technology to meet

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 9 -

the needs of business and other organizations. It began providing curriculum recommendations in
1985.

• The Computer Society of the Institute for Electrical and Electronic Engineers (often referred to as
“the IEEE-CS” or “the Computer Society”) became an entity in 1948. As the name suggests, the
IEEE (founded originally from American Institute of Electrical Engineers) and the Institute of Radio
Engineers in 1884) began as an organization of electrical engineers. The Computer Society is an
organization within the IEEE focuses upon on computing from the engineering perspective. Today
the Computer Society's members include computer engineers, software engineers, and computer
scientists. In recent years, there has been a large overlap in membership between the ACM and the
IEEE Computer Society. It began providing curriculum recommendations in 1983.

Prior to the 1990’s, each society produced its own curriculum recommendations. Originally, some
separation of effort seemed reasonable, as each society had a special focus:

• The ACM focuses on the science of computing, developing both theory and software that stretched
the boundaries of what could be done with computers;

• The IEEE-CS focuses on engineering the computers to take advantage of new computing knowledge
and more advanced software;

• The AITP focuses on using computers in business.

Over time, however, the goals of the societies began to overlap, and the advantages of cooperative work
among them became obvious. Today, the societies cooperate in creating curriculum standards, and in this
way send a single message to their community; many researchers and teachers belong to more than one of
the societies.

The ACM and the IEEE-CS joined forces in the late 1980s to create a joint curriculum report for
computing. Published in 1991 and known as Computing Curricula 1991 or CC’91 (CC91), it provided
guidelines for curricula for four-year Bachelor’s degree programs in computer science. Throughout the
1990s, various groups made efforts to produce curricula guidelines for other programs in computing
education. By 1993, the ACM had produced five reports for two-year Associate degree programs, one
report for each of computer science, computer engineering technology, information systems, computer
support services, and computing for other disciplines. [AssocDeg] Also in 1993, the ACM produced
curriculum recommendations for a high school curriculum [HS]. In 1997, the ACM, AIS, and AITP
[AIS] published a model curriculum and a set of guidelines for four-year Bachelors degree programs in
information systems [IS97]. The 1990s also saw newer computing disciplines gain increased prominence
in the U.S. The discipline called computer engineering became more visible in the U.S., as did software
engineering.

By the end of the 1990s, it was becoming clear that the field of computing had not only grown rapidly but
had also grown in many dimensions. The proliferation of different kinds of degree programs in
computing left many people confused. Given the growing number of kinds of computing degree
programs, confusion was perhaps inevitable. This diversity of computing degrees was a problem that had
not existed in a significant way prior to the computing explosion in the 1990s. Because it was new
problem, there was no established way of coordinating and simplifying the choices that suddenly seemed
to be appearing everywhere.

When the ACM and the IEEE-CS again joined forces in the late 1990s to produce an up-to-date
curriculum report to replace CC’91, these organizations could no longer ignore the problem. The original
plan called for the two societies to form a joint task force that would update the CC’91 report. ACM and
IEEE-CS created a joint task force and its goal was to produce Computing Curricula 2001 (CC2001), a
single report that would provide curriculum guidelines for degree programs for the various computing

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 10 -

disciplines. However, the members of the task force soon recognized the new reality: computing had
grown in so many dimensions that no single view of the discipline seemed adequate. The days when the
field of computing consisted of only computer science and information systems were over, and the
richness and breadth provided by the various computing disciplines called for a new way of defining what
computing curricula should be.

The CC2001 Task Force faced this challenge by making four important decisions:

1. There should be a curriculum report (or volume) for each of the major computing disciplines,
including computer engineering, computer science, information systems, and software engineering;

2. The number of computing-related disciplines is likely to grow. The curriculum report structure must
accommodate not only the four major computing disciplines in existence at that time (enumerated
above) but also must accommodate new computing disciplines as they emerge.

3. The growing number of computing disciplines naturally causes confusion in many quarters.
Therefore, in addition to the various discipline-specific volumes, there must also be an Overview
report to serve as a practical “umbrella” guide to the discipline-specific volumes.

4. The pace of change in computing is sufficiently rapid that we must establish a process by which
organizations could update curriculum guidelines more frequently than once per decade.

The Task Force recognized that its members were primarily computer scientists and deemed itself
qualified to produce a report only for computer science. It called for the ACM, the IEEE-CS, the AIS,
and other professional societies to cooperate in efforts to create volumes for computer engineering,
information systems, and software engineering. The work of this task force, known as Computing
Curricula 2001 (CC2001), was published in December 2001 [CC2001]. The CC2001 Report contains
two specifications:

• Provide a new structure for computing curriculum guidelines encompassing the decisions taken by the
Task Force and listed above in the CC2001 model.

• Detailed curricula guidelines for undergraduate degree programs in computer science.

[Because the CC2001 report included CS curriculum guidelines, those who refer to it for its computer
science content might think of as CS2001. Beginning with the publication of this report, we will use the
title “Computing Curricula 20xx” for Overview reports. “Computer Science 20xx” will designate new
editions of CS curriculum guidelines. In all cases, “20xx” will be the year of publication.]

In response to the CC2001 model, work soon began on other discipline-specific volumes:

• The information systems community published its updated report in 2002. [IS-2002]

• The software engineering group has completed its report and it expects publication in 2004. We thus
refer to it as SE-2004.

• The computer engineering report is nearing completion. We expect its publication in early 2005 and
thus refer to it as CE-2004.

• The CC2001 prediction of additional emerging computing disciplines has already proved correct. A
report on degree programs in information technology is under development. We anticipate that it will
be published in 2005 and thus refer to it as IT-2005.

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 11 -

The diagram in Figure 1.1 represents the scope of the continuing effort to provide guidelines and
standards for computing curricula. The top-level Overview block, CC2004, represents this report. Each
of the first five sub-blocks represents a curriculum report for one of the existing computing disciplines.
The sixth sub-block is a placeholder for future reports on additional computing disciplines as necessitated
by the emergence of new computing disciplines.

1.4. Guiding Principles
Five principles guided the development of this report.

1. The dramatic growth in the number of computing disciplines, and in their collective impact on
society, requires that the computing disciplines articulate a shared identity. Given the importance
of computing to society, we in computing have a responsibility to help society understand what we
do. The fact that computing offers several kinds of academic programs is a major strength and an
opportunity but requires that we offer society a practical vision of our shared field, of the various
disciplines within it, and of the meaningful choices that face students, educators, and their
communities. The goal of this report is to articulate the shared identity, the separate identities of each
computing discipline, and the choices available to students, educators, and communities.

2. Each computing discipline must be a participant in defining the identities and choices as
articulated in this report. Each computing discipline must articulate its own identity, recognize the
identities of the other disciplines, and contribute to the shared identity of computing.

CC2001

(CS2001)
Computer
Science

Curriculum
Report

IS 2002

Information

Systems
Curriculum

Report

SE 2004

Software

Engineering
Curriculum

Report

CE 2005

Computer

Engineering
Curriculum

Report

IT2005

Information
Technology
Curriculum

Report

Other

Curriculum
Reports as
needed for
emerging
disciplines

CC2004

Overview

Report and
Guide to

Undergraduate
Degree

Programs
in Computing

Figure 1.1. Structure of the Computing Curriculum Volumes

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 12 -

3. This report must address a broad audience, not just its technically oriented constituents. As
discussed in Section 1.1, the audience for this report includes a range of people who have reason to
become familiar with academic computing degree programs. Most members of that audience are not
computing educators. Our goal is to paint a concise and useful picture that will illuminate the choices
faced by students and by those who are responsible for shaping their educational choices. This goal is
fundamentally different from the goal of reports that define curriculum guidelines for degree
programs. It dictates that we must be relatively concise and that we minimize technical jargon. We
ask the technically oriented reader to appreciate our need to avoid the kind of distinctions and
technical emphasis expected of documents aimed at a technical audience.

4. We should characterize the computing disciplines by reference to the body of knowledge and skills
defined in the most recent curriculum report for each of those disciplines. The definition of a
shared characterization of the computing disciplines is unprecedented, and it is imperative that we set
attainable goals. We confine our attention to the bodies of knowledge and skills defined by each
computing discipline as published in the individual curriculum reports; we do not consider pedagogy
or course definition. We believe that pedagogical issues and the definition of computing courses that
might serve multiple audiences across the computing disciplines are important and timely concerns.
However, we believe it would be ill advised to address such issues in this report. [Note: We should
not construe this decision as a precedent for others to follow. It is possible that authors of subsequent
reports want to revisit this issue.]

5. This report must go beyond an examination of details to generate a useful synthesis for the
intended audience. While the findings of this report are based on examination of the bodies of
knowledge in current discipline-specific curriculum volumes, we must go beyond simple
examination-and-reporting to generate a synthesis that will be meaningful and useful for our
audience. Our task requires representatives of each discipline to make judgments about how to form
an insightful, consensus-based overview of the computing disciplines.

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 13 -

Chapter 2. Computing Disciplines

We now focus our attention on computing disciplines. There may be dozens if not hundreds around the
world. However, among them, five appear to have some prominence today. These include computer
engineering, computer science, information systems, information technology, and software engineering.
We will show how these disciplines evolved, their commonalities and differences, and their scope within
the computing community.

2.1. What is computing?
In a general way, we can define computing to mean any activity of a technical nature involving
computers. Thus computing includes hardware, software, and communications that involve the design as
well as the use of these. It includes the design and building of hardware and software systems for a
variety of purposes and it includes the management and structuring of a whole range of information
perhaps in different formats (e.g. text, video, sound, etc). Computing also it includes the processing of
information, the protection and the care of that information and it includes the usability of computer
systems, making them behave intelligently (however that is to be interpreted) and so on. The possibilities
are just vast. Computing also has other meanings that are more specific, based on the context in which
the term is used. For example, an information systems specialist will view computing somewhat
differently from a software engineer. Hence, we can describe computing as a discipline associated with
the structuring and the organization of information as well as the automatic processing of that
information.

Computing provides a wide range of choices about how an individual might focus his or her professional
life. To prepare for entry into a computing profession, a student typically earns a bachelors degree in one
of the computing disciplines. There are currently five major kinds of undergraduate degree programs in
computing, and each one provides a different perspective on the broad topic area. In the next section, we
shall see what these five computing disciplines are, and how they compare with each other in terms of
their focus as well as the kinds of problems and issues they address.

2.2. The landscape of the computing disciplines
Computing is not just a single discipline but is a family of disciplines. During the 1990s, important
changes in computing and communications technology, and in the impact of that technology on society,
lead to important changes in this family of disciplines.

2.2.1. Before the 1990s

Before the 1990s, only three computing-related disciplines were highly visible in North America:
computer science, electrical engineering, and information systems. Each of these disciplines was
concerned with its own well-defined area of computing. Because they were the only prominent
computing disciplines, and because each one had its own area of work and influence, it was much easier
for students to tell which kind of degree program to choose. For students who wanted to become expert
in developing software or with the theoretical aspects of computing, computer science was the obvious
choice. For students who wanted to work with hardware, electrical engineering was the clear option. For
students who wanted to use hardware and software to solve business problems, information systems was
the place to be.

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 14 -

Each of these three disciplines had its own domain. There was not any shared sense that they constituted
a family of computing disciplines. As a practical matter, computer scientists and electrical engineers
sometimes worked closely together, as they were both concerned with developing new technology. The
often shared facilities and sometimes required the help of each other. Information systems specialists had
ties with business schools and did not have much interaction with computer scientists and electrical
engineers. The pre-1990s world of the computing disciplines appears in Figure 2.1, with the distance
between the disciplines indicating how closely they worked with each other.

2.2.2. Significant developments of the 1990s

During the 1990s, several developments changed the landscape of the computing disciplines in North
America, although in other parts of the world some of these changes occurred earlier:

• Computer engineering became a strong discipline. While computer engineering had a significant
presence in some universities prior to the 1990s, at most universities with engineering programs it
was one of several specialty areas within electrical engineering. During the 1990s, computer chips
became basic components of most kinds of electrical devices and many kinds of mechanical devices.
(For example, modern automobiles contain several computers that perform tasks that are transparent
to the driver.) Computer engineers design and program the chips that permit digital control of many
kinds of devices. The dramatic expansion in the kinds of devices that rely on chip-based digital logic
caused computer engineering to become a strong field unto itself, with degree programs at many US
universities. In other countries titles like computer systems engineering were often used instead.

EE CS IS

Pre-1990s:

HARDWARE SOFTWARE BUSINESS

Figure 2.1: The landscape of mainstream computing degree programs, pre-1990.

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 15 -

• Software engineering emerged as an area within computer science. As computing is used to attack a
wider range of complex problems, creating reliable software becomes more difficult. With large,
complex programs, no one person can understand the entire program, and various parts of the
program can interact in unpredictable ways. (For example, fixing a bug in one part of a program can
create new bugs elsewhere.) People also use computing in safety-critical tasks, where a single bug
can cause injury or death. Over time, it became clear that producing good software is very difficult,
very expensive, and very necessary. This lead to the creation of software engineering, a term that
emanated from a NATO sponsored conference held in Garmish, Germany in 1968. While computer
science (like other sciences) focuses on creating new knowledge, software engineering (like other
engineering disciplines) focuses on rigorous methods for designing and building things that reliably
do what they’re supposed to do. Major conferences on software engineering were held in the 1970s,
and during the 1980s, many computer science degree programs included software engineering
courses. However, it was not until the 1990s that one could reasonably expect to find software
engineering as a key component of computer science study at nearly every institution.

• Software engineering began to develop as a discipline unto itself. Originally the term ‘software
engineering’ was introduced to reflect the utilization of traditional ideas from engineering to the
problems of building software. As software engineering matured, the scope of its challenge became
clearer. In addition to its computer science foundations, software engineering also involves human
processes that, by their nature, are less abstract and harder to formalize than are the logical
abstractions of computer science. Experience with software engineering courses within computer
science curricula showed many that such courses can teach students “about the field of software
engineering” but do not succeed at teaching them “how to be software engineers”. Many experts
concluded that the latter goal requires a range of coursework and applied project experience that go
beyond what they could add to the computer science curricula. Degree programs in software
engineering emerged in the United Kingdom and Australia during the 1980s, but these programs were
in the vanguard. In the United States, degree programs in software engineering, designed to provide a
more thorough foundation than can be provided within computer science curricula, began to emerge
during the 1990s.

• Information systems had to address a growing sphere of challenges. Prior to the 1990s, many
information systems specialists focused primarily on the computing needs that the business world had
faced since the 1960s: accounting systems, payroll systems, inventory systems, etc. By the end of the
1990’s, networked personal computers had become basic commodities. No longer tools only for
technical specialists, they became integral parts of the work environment, used by people at all levels
of the organization. Because of the expanded role of computers, organizations had more information
available than ever before and organizational processes were increasingly enabled by computing
technology. The problems of managing information became extremely complex, and the challenges
of making proper use of information and technology to support organizational efficiency and
effectiveness became crucial issues. Because of these factors, the challenges faced by information
systems specialists grew in size, complexity, and importance. In addition, Information Systems as a
field paid increasing attention to the use of computing technology as a means for communication and
collaborative decision making in organizations.

• Information technology programs began to emerge. During the 1990s, computers became essential
work tools at every level of most organizations and networked computer systems became the
informational backbone of organizations. We credit this to improving productivity. However, it also
created new workplace dependencies, as problems in the computing infrastructure can limit
employees’ ability to do their work. IT departments emerged to ensure that the computing
infrastructure of an organization was suitable, that it worked reliably, that people in the organization
had their computing-related needs met and had their problems fixed. As it became clear that
academic degree programs were not producing graduates who had the right mix of knowledge and

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 16 -

skills to meet these essential needs, many colleges and universities developed degree programs in
information technology to fill this crucial void.

Collectively these developments reshaped the landscape of the computing disciplines. The explosive
growth of the internet affected strongly all computing disciplines. Furthermore, the tremendous resources
that were allocated to information technology projects in all Western societies because of various factors,
including the dot.com bubble, the anticipated Y2K problems, and in Europe the launch of the Euro.

2.2.3. After the 1990s

The new landscape of the computing disciplines reflects the ways in which computing-as-a-whole has
matured to address the important problems of the new millennium. Computer engineering emerged from
electrical engineering and assumed a primary role with respect to computer hardware and related
software. Software engineering emerged from within computer science to address the important
challenges inherent in building complex software systems that are reliable and affordable. Information
technology came out of nowhere to fill a void that other computing disciplines did not adequately address.

EE CS IS

EE CE CS SE IT IS

Pre-1990s:

Post-1990s:

HARDWARE SOFTWARE BUSINESS

HARDWARE SOFTWARE ORGANIZATIONAL
NEEDS

Figure 2.2. The computing disciplines, before and after the 1990s.

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 17 -

While this maturation is a positive evolution, there is a greater range of possibilities for students and
educational institutions to focus their attention. The increased diversity of computing programs means
that the spheres of responsibility are somewhat different from what they were before the 1990s. Figure
2.2 shows the pre-1990s and post-1990s spheres of responsibility. As discussed in section 2.2.1, before
the 1990s a convenient one-to-one mapping allowed students to determine which discipline matched their
personal interests. This neat mapping is evident in the top portion of Figure 2.2. As shown in the bottom
portion of Figure 2.2, the post-1990s world of computing presents greater possibilities and opportunities.

As a practical matter, it is still clear where students who want to study hardware should go. Computer
engineering has emerged from electrical engineering as the home for those working on the hardware and
software issues involved in the design of digital devices. For those with other interests, however, the
choices are not so clear-cut. In the pre-1990s world, students who wanted to become expert at software
development would go into computer science. The post-1990s world presents meaningful choices:
computer science, software engineering, and even computer engineering each include their own
discipline-specific perspective on software development. Similarly, in the pre-1990s world, the
predominant area for applying technology to real-world problems was on business and information
systems was the home for such work. The scope of real-world applications has broadened from business
to organizations of every kind, and students face a choice; for instance, information systems and
information technology programs would each have its own special focus.

2.3. Descriptions of the major computing disciplines
In this section, we characterize each of the five major kinds of computing disciplines. See sections 2.6
and 2.7 for more information on how to understand this important distinction between the names of the
computing disciplines and the names of a particular degree program.

2.3.1. Computer Engineering

Computer engineering is concerned with the design and construction of computers, and computer based
systems. It involves the study of hardware, software, communications, and the interaction between them.
Its curriculum focuses on the theories, principles, and practices of relevant areas of traditional electrical
engineering and mathematics, and applies them to the problems of designing computers and the many
kinds of computer-based devices.

Computer engineering students study the design of digital hardware systems, including computers,
communications systems, and devices that contain computers. They also study software development
with a focus on the software used within and between digital devices (not the software programs directly
used by computer users). The emphasis of the curriculum is on hardware more than software, and it has a
very strong engineering flavor.

Currently, a dominant area within computing engineering is embedded systems, the development of
devices that have software components embedded in hardware. For example, devices such as cell phones,
digital recorders, alarm systems, x-ray machines, and laser surgical tools all require integration of
hardware and embedded software, and they are all the result of computer engineering.

2.3.2. Computer Science

Computer science spans a wide range, from its theoretical and algorithmic foundations to cutting-edge
developments in robotics, computer vision, intelligent systems, bioinformatics, and other exciting areas.
We can think of the work of computer scientists as falling into three categories:

• They develop effective ways to solve computing problems. For example, computer scientists develop
the best possible ways to store information in databases, send data over networks, and display

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 18 -

complex images. Their theoretical background allows them to determine the best performance
possible, and their study of algorithms lets them develop new problem-solving approaches that
provide better performance.

• They devise new ways to use computers. Progress in the CS areas of networking, database, and
human-computer-interface came together as the world-wide-web, which changed the world. Now,
researchers are working to make robots be practical aides and even demonstrate intelligence,
databases create new knowledge and, in general, use computers to do new things.

• They design and implement software. Computer scientists take on challenging programming jobs.
They also supervise other programmers, keeping them aware of new approaches.

Computer science spans the range from theory to programming. Other disciplines can produce graduates
better prepared for specific jobs, while computer science offers a comprehensive foundation that permits
graduates to adapt to new technologies and new ideas.

2.3.3. Information Systems

Information systems specialists focus on integrating information technology solutions and business
processes to meet the information needs of businesses and other organizations and enable organizations to
achieve their objectives in an effective and efficient way. This discipline’s perspective on “Information
Technology” emphasizes information, and sees technology as an instrument to enable the generation,
processing and distribution of needed information. Professionals in this discipline are primarily
concerned with the information that computer systems can provide to aid the organization in defining and
achieving its goals and the processes that organizations can implement using information technology.
Information systems professionals often work in organizations that are large and complex, and with
information systems that are correspondingly large and complex. They understand both technical and
organizational factors, and must be able to help the organization determine how information and
technology-enabled business processes can provide the organization with a competitive advantage.

The discipline now called information systems began more than forty years ago to address the data
processing needs of business in the areas of accounting, payroll, and inventory. As the role of computing
has expanded throughout the organization, so has the scope of information systems. Today, the
information systems specialist plays a key role in determining the requirements for an organization’s
information systems and is active in their specification, design, and implementation. As a result, such
professionals require a sound understanding of organizational principles and practices so that they can
serve as an effective bridge between the technical and management communities within an organization,
enabling them to work in harmony to ensure that the organization has the information and the systems it
needs to support its operations. Information systems professionals are also involved in designing
technology-based organizational communication and collaboration systems.

Most departments offering programs in Information Systems (IS) are located in business schools, and
most IS degrees are combined computing and business degrees. A wide variety of IS programs exists
under various labels which often reflect the nature of the program. For example, programs in Computer
Information Systems usually have the strongest technology focus, whereas programs in Management
Information Systems sometimes emphasize organizational and behavioral aspects of the IS discipline.
The names of the degree programs are not consistent. Therefore, it is important to evaluate the details of
the curriculum that a specific program follows to understand how its purpose.

2.3.4. Information Technology

Information technology is a label that has two meanings. In the broadest sense, we often use “information
technology” interchangeably with “computer technology”. In a more focused sense, it refers to academic

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 19 -

degree programs that prepare students to meet the technology needs of business, government, healthcare,
schools, and other kinds of organizations.

In the previous section, we said that the field of Information Systems focuses on the “information” aspects
of “information technology”. The field of Information Technology is the complement of that perspective.
IT’s emphasis is on the technology itself more than on the information it conveys. IT is a new and rapidly
growing discipline, which started as a grass roots response to the practical, everyday needs of business
and other organizations. Today, organizations of every kind are dependent on information technology.
They need to have the appropriate systems in place. Those systems must work properly and be secure.
Professionals must upgrade, maintain, and replace them as appropriate. The people who work throughout
an organization require support from IT staff that thoroughly understands computer systems and are
committed to solving whatever computer-related problems they might have. Graduates of information
technology programs address these needs.

Degree programs in Information Technology arose because degree programs in the other computing
disciplines failed to produce an adequate supply of graduates capable of handling these very real needs.
IT programs exist to produce graduates who possess the right combination of knowledge and practical,
hands-on expertise to take care of both an organization’s information technology and the people who use
it. IT specialists assume responsibility for selecting hardware and software products appropriate for an
organization, integrating those products with organizational needs and infrastructure, and installing,
customizing and maintaining those applications for the organization’s computer users. Examples of these
responsibilities include the installation of networks; network administration and security; the design of
web pages; the development of multimedia resources; the installation of communication components; the
oversight of email products; and the planning and management of the technology life-cycle by which an
organization’s technology is maintained, upgraded, and replaced.

2.3.5. Software Engineering

Software engineering is the discipline of developing and maintaining software systems that behave
reliably and efficiently, and are affordable to develop and maintain. This reflects its origins as outlined in
section 2.2.2. However, more recently it has evolved in response to the increased importance of software
in safety-critical applications and to the growing impact of large and expensive software systems in a
wide range of situations.

Traditionally, computer scientists produced software, and electrical engineers produced the hardware on
which the software runs. As the size, complexity, and critical importance of software grew, so did the
need to ensure that software performs as intended. By the early 1970s, it was apparent that proper
software development practices require more than just the underlying principles of computer science; they
also need the rigor that the engineering disciplines bring to the reliability and trustworthiness of the
artifacts they engineer.

Software engineering is different in character from other engineering disciplines, due to both the
intangible nature of software and to the discontinuous nature of software operation. It seeks to integrate
the science of computer science with the engineering principles developed for tangible, physical
phenomena. Prospective students can expect to see software engineering presented in two contexts:

• Degree programs in computer science offer one or more software engineering courses as elements of
the CS curriculum. In addition, most programs offer a multi-course concentration in software
engineering within the computer science discipline.

• A number of institutions offer a software engineering degree program.

Degree programs in computer science and in software engineering generally have many courses in
common. Software engineering students generally study more applied mathematics and less theory than

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 20 -

computer science students do. They tend to take a more rigorous and pragmatic view of software
reliability and maintenance. While computer science students might study areas such as artificial
intelligence or computer graphics, software engineering students focus more on techniques for developing
and maintaining software that is correct from its inception to avoid costly and potentially dangerous
situations later. While CS students are likely to have heard of the importance of such techniques, the
engineering knowledge and experience provided in SE programs goes beyond what CS programs can
provide. Such is the importance of this that one of the recommendations of the SE report is that during
their program of study students of SE should participate in the development of software to be used in
earnest by others from some significant application domain. Thus knowing how to provide genuinely
useful and usable software is of paramount importance.

In the workplace, “software engineer” is a job label. There is no standard definition for this term when
used in a job description. The role of a “software engineer” varies widely among employers. It can be a
title equivalent to “computer programmer” or a title for someone who manages a large, complex, and/or
safety-critical software project. The public must be mindful not confuse the discipline of software
engineering with the ambiguous use of the term ‘software engineer” as used in employment
advertisements. The two terms are quite often very different meanings.

2.4. Conceptual snapshots: A graphical view of the computing disciplines
To help you understand the commonalities and differences among the computing disciplines, we created a
set of graphical characterizations of them. These graphics are just snapshots to give you a better feel for
how the disciplines compare to each other. They provide a simple view of how the various disciplines
occupy the “problem space” of computing. To keep things simple, we have used the diagram shown in
Figure 2.4.

The horizontal axis ranges from “Theory, Principles, Innovation” on the left, to “Application,
Deployment, Configuration” to the right. Thus, someone who likes the idea of working in a laboratory to
invent new things, or in a university to develop new principles will want to work in a discipline that
occupies the space to the left. Conversely, someone who wants to work with people to help them choose
and use appropriate technology, or who wants to learn how to integrate off-the-shelf products to solve key
organizational problems, will want an area that occupies space to the right. Because there are many,
many kinds of jobs and tasks that fall between these two extremes, one should not just look only at the far
left and far right, but rather consider the range of possibilities in between those extremes.

The vertical axis ranges from “Computer Hardware and Architecture” at the bottom, to “Organizational
System Issues” at the top. As we move higher on this axis, the focus of work is more on people and on
information that means something to people. As we move lower on this axis, the focus of work is more
on devices and on the data shared among them. Thus, someone who likes designing and building circuits,
or who is fascinated with the inner workings of computers, will care about the lower portion of the space,
while someone who likes seeing how technology can work for people, or who is curious about the impact
of technology and information on organizations, will care about the upper portion of the space.

We can consider both the horizontal and vertical dimensions at once. For example, someone who cares
about making things work for people, but is more interested in devices than information or organizations
will be interested in the lower-right, someone who wants to develop new theories about how information
affects organizations will be interested in the upper-left, and so on. In Figures 2.5 through 2.9, we use
this framework to sketch out the conceptual territory occupied by each of the five computing disciplines.

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 21 -

Theory
Principles
Innovation

Application
Deployment

Configuration

More Theoretical More Applied

DEVELOPMENT

Organizational
System Issues

Application
Technologies

Software
Development

Systems
Infrastructure

Computer Hardware
and Architecture

Figure 2.4. The problem space of computing

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 22 -

Theory
Principles
Innovation

Application
Deployment

Configuration

More Theoretical More Applied

DEVELOPMENT

CE

Organizational
System Issues

Application
Technologies

Software
Development

Systems
Infrastructure

Computer Hardware
and Architecture

2.4.1. Computer Engineering

The shaded portion in Figure 2.5 represents the computer engineering discipline. It is broad across the
bottom because computer engineers cover the range from theory and principles to practical application
with respect to designing and implementing hardware solutions and the software that lives inside the
hardware. It narrows towards the center as we move upwards because computer engineers’ interests
narrow as we move away from the hardware. By the time we get up to the level of software development,
we see that computer engineers tend not to be developing new principles about software, nor are they
writing software programs that everyday people will use. Rather, their interest tends to be narrowed to
horizontal center, because they care about software only inasmuch as they need it to develop integrated
devices.

Figure 2.5. Computer Engineering

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 23 -

Theory
Principles
Innovation

Application
Deployment

Configuration

More Theoretical More Applied

DEVELOPMENT

CS

Organizational
System Issues

Application
Technologies

Software
Development

Systems
Infrastructure

Computer Hardware
and Architecture

2.4.2. Computer Science

The shaded portion in Figure 2.6 represents computer science. Computer science covers most of the
vertical space between the extreme top and extreme bottom because computer scientists generally do not
deal with “just the hardware” that runs software, or about “just the organization” that make use of the
information that computing can provide. As a group, computer scientists care about almost everything in
between those areas (down as far as the software that enables devices to work; up as far as the
information systems that help organizations operate). They design and develop all types of software,
from systems infrastructure (operating systems, communications programs, etc.) to application
technologies (web browsers, databases, search engines, etc.) Computer scientists create these capabilities,
but they do not manage the deployment of them. Therefore, the shaded area for computer science
narrows and it then stops as we move to the right. This is because computer scientists do not help people
to select computing products, nor to tailor products to organizational needs, nor do they learn to use such
products.

Figure 2.6. Computer Science

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 24 -

Theory
Principles
Innovation

Application
Deployment

Configuration

More Theoretical More Applied

DEVELOPMENT

IS

Organizational
System Issues

Application
Technologies

Software
Development

Systems
Infrastructure

Computer Hardware
and Architecture

2.4.3. Information Systems

The shaded portion in Figure 2.7 represents the discipline of information systems. The shaded area
extends across most of the top-most level because IS people are concerned with the relationship between
information systems and the organizations that they serve in a very broad way, extending from theory and
principles to application and development; many IS professionals are also involved in system deployment
and configuration and training users. The area covered by IS dips downward, all the way through
software development and systems infrastructure in the right half of the graph. This is because IS
specialists often tailor application technologies (especially databases) to the needs of their organizations,
and they often write software that combines other software in ways that suit their organizations’ needs for
information. For IS specialists, the primary customer is the organization itself, and their job is to ensure
the organization has the information it needs and the most effective and efficient organizational processes
supported by the most suitable technology in place.

Figure 2.7. Information Systems

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 25 -

Theory
Principles
Innovation

Application
Deployment

Configuration

More Theoretical More Applied

DEVELOPMENT

IT

Organizational
System Issues

Application
Technologies

Software
Development

Systems
Infrastructure

Computer Hardware
and Architecture

2.4.4. Information Technology

The shaded portion in Figure 2.8 represents the information technology discipline. Its shaded area
extends down most of the right edge, as it focuses on the application, deployment, and configuration
needs of organizations and people over a wide spectrum. Across this range (from organizational
information systems, to application technologies, and down to systems infrastructure), their role has some
overlap with IS, but IT people are unique in their often have a focus on satisfying human needs that arise
from computing technology. In addition, IT’s shaded area goes leftwards, from application into
development, especially in the area of application technologies. This is because IT people often develop
the web-enabled digital technologies that organizations use for a broad mix of informational purposes.

Figure 2.8. Information Technology

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 26 -

Theory
Principles
Innovation

Application
Deployment

Configuration

More Theoretical More Applied

DEVELOPMENT

SE

Organizational
System Issues

Application
Technologies

Software
Development

Systems
Infrastructure

Computer Hardware
and Architecture

2.4.5. Software Engineering

The shaded portion in Figure 2.9 represents the discipline of software engineering. Just as we have seen
computer engineering’s area span the entire horizontal dimension at the lower hardware-related level, and
IS span most of that dimension at the higher organization-related level, software engineering covers a
wide range with respect to the systematic development of software. This is because SE people have
stepped up to fill a wide range of needs in large-project software expertise. SE’s main goal is to develop
systematic models and reliable techniques for producing high-quality software, and these concerns extend
all the way from theory and principles to daily practice. The domain of SE also extends downward
through systems infrastructure, as SE people develop software infrastructure that is robust in operation.
Its domain also extend upward into information systems because SE people are interested in designing
and developing information systems that help them manage software development projects to ensure that
correct software is produced on time and within budget.

Figure 2.9. Software Engineering

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 27 -

Chapter 3: Degree programs and career requirements

In this chapter, we summarize the characteristics of degree programs in each of the five major disciplines
and compare them to each other in terms of both (a) the relative focus of coverage within degree
programs, and (b) the capabilities we expect graduates to have. We then discuss the status and pace of
institutional response to the development of the computing disciplines. After summarizing the
relationship between degree programs and professional career opportunities, we summarize the elements
that are common to all computing degree programs.

3.1. Curriculum summaries: A tabular view of computing degree programs
Snapshots are good for conveying information at a glance but, by their nature, they are incomplete in
detail and can give incorrect impressions. In this section, we provide an expanded comparison for those
who want to see more detail about the computing disciplines.

Table 3.1 provides a comparative view of the emphasis of study among the five kinds of computing
degree programs we already discussed. The left column contains a list of some fifty topics that represent
areas of knowledge and skill that students study in computing degree programs. This list approximates a
union of the topics specified in the five major computing curriculum reports, providing a summary of the
topics studied at the undergraduate level in one of more of the computing disciplines. If you are
unfamiliar with them, you may consult the glossary of topics provided in Appendix A. The various
curriculum reports sometimes use slightly different language for a given topic. They also differ in the
degree to which they break down a topic into subtopics. As a result, the list of topics provided in Table
3.1 is not an exact match with the topic list of any of the curriculum reports. Rather, it is a summary of
topics specified in the undergraduate computing curriculum reports.

For each item in this list of fifty topics, the other columns show numerical values for each of the five
kinds of computing degree programs. These values range between 0 (lowest) and 5 (highest), and
represent the relative emphasis each kind of computing degree program places on each given topic. For
each of the five kinds of degree programs, each topic contains two values: one in the “min” column and
one in the “max” column.

• The “min” value represents the minimum emphasis placed on that topic as specified in the curriculum
report for that computing discipline. The “min” value indicates a discipline’s minimum requirements
relative to the minimum requirements of the other disciplines.

• The “max” value represents the greatest emphasis that one can reasonably place on the topic within
the latitude provided by the curriculum report for that degree. Each discipline permits students some
latitude in choosing an area of specialization and requires that a student’s program of study go beyond
the minimums defined in the curriculum report. It also permits each institution to establish
requirements greater than those defined in the five curriculum reports. The “max” value indicates
what one might reasonably expect of those who concentrate on the topic within the limits implied by
other degree requirements.

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 28 -

Table 3.1: Comparative weight of topics across the five kinds of computing degree programs

CE CS IS IT SE Knowledge Area
min max min max min max min max min max

Programming Fundamentals 4 4 5 5 2 4 1 3 5 5
Algorithms and Complexity 2 4 5 5 1 2 0 1 4 4
Computer Architecture and Organization 5 5 2 4 1 2 1 2 2 4
Operating Systems Principles & Design 2 4 3 5 1 1 1 1 3 4
Operating Systems Configuration & Use 2 3 2 4 2 3 5 5 2 4
Net Centric Principles and Design 1 3 2 4 1 3 3 4 2 4
Net Centric Use and configuration 1 2 2 3 2 4 5 5 2 3
Theory of Programming Languages 1 2 3 5 0 1 0 0 2 4
Human-Computer Interaction 2 5 2 4 2 5 4 5 3 5
Graphics and Visualization 1 3 1 5 1 1 0 0 1 3
Intelligent Systems (AI) 1 3 2 5 1 1 0 0 0 0
Information Management (DB) Theory 1 3 2 5 1 3 1 1 2 5
Information Management (DB) Practice 1 2 1 4 4 5 2 4 1 4
Scientific computing (Numerical mthds) 0 2 0 5 0 0 0 0 0 0
Organizational Theory 0 0 0 0 1 4 1 2 0 0
Management of Info Systems Organ’tion 0 0 0 0 3 5 0 0 0 0
Decision Theory 0 0 0 0 3 3 0 0 0 0
Organizational Behavior 0 0 0 0 3 5 1 2 0 0
Organizational Change Management 0 0 0 0 2 2 0 1 0 0
Legal / Professional / Ethics / Society 2 5 2 4 2 5 2 4 2 5
General Systems Theory 0 0 0 0 2 2 1 3 0 0
Information Systems Development 0 2 0 2 5 5 1 3 2 4
Risk Management (Project, safety risk) 2 4 1 1 2 3 1 4 2 4
Project Management 2 4 1 2 3 5 1 3 4 5
Analysis of Business Requirements 0 1 0 1 5 5 1 2 0 2
Engineering Foundations for SW 1 2 1 2 1 1 0 0 2 4
Engineering Economics for SW 1 1 1 1 2 2 1 1 2 2
Software Modeling and Analysis 1 3 2 3 3 3 0 0 4 5
Software Design 2 4 3 5 1 3 1 1 5 5
Software Verification and Validation 1 3 1 2 1 2 0 0 4 5
Software Evolution (maintenance) 1 3 1 1 1 2 1 1 2 4
Software Process 1 1 1 1 1 1 1 1 2 4
Software Quality 2 3 2 3 1 2 1 1 3 4
Comp Systems Engineering 5 5 1 2 0 0 0 0 2 3
Embedded Systems 2 5 1 3 0 0 0 0 2 4
Circuits and Systems 5 5 0 2 0 0 0 0 0 0
Electronics 5 5 0 0 0 0 0 0 0 0
Digital logic 5 5 2 3 1 1 1 1 1 3
E-business 0 0 0 0 4 4 1 1 0 3
Distributed Systems 3 5 1 3 2 4 1 3 2 4
Digital Signal Processing 3 5 0 2 0 0 0 0 0 2
VLSI design 2 5 0 1 0 0 0 0 0 1
HW testing and fault tolerance 3 5 0 0 0 0 0 2 0 0
Security: issues and principles 2 3 1 4 2 3 1 3 1 3
Security: implementation and mgt 1 2 1 3 1 3 3 5 1 3
Systems administration 1 2 1 1 1 3 3 5 1 2
Systems integration 1 4 1 2 1 4 4 5 1 3
Digital media development 0 2 0 1 1 2 3 5 0 1
Technical support 0 1 0 1 1 3 5 5 0 1
Mathematical foundations 5 5 4 5 2 4 2 4 4 5
Interpersonal communication 3 4 1 3 3 5 2 4 3 4

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 29 -

Again, “min” represents the minimum called for by the curriculum guidelines, and “max” represents the
greatest emphasis one might expect in the typical case of a student who chooses to undertake optional
work in that area or who graduates from a school that chooses to require its students to achieve mastery
beyond that required by the curriculum reports.

Both “min” and “max” values refer to reasonable expectations for the general case. Obviously, for any
individual student or degree program, the “min” value might be as low as 0 and the “max” value might be
as high as 5, irrespective of the prevailing curricular requirements for each discipline.

3.1.1. What the tabular comparison represents

Table 3.1 represents the consensus of judgment reached by the CC2004 Joint Task Force. It formulated
that consensus from an examination of the discipline-specific body of knowledge found in the most recent
curriculum report for each of the computing disciplines: computer engineering, computer science,
information systems, information technology, and software engineering.

It used the results of that examination to define the topical elements of the table. It also heavily
influenced the numerical values assigned to each topic for each discipline. The discipline-specific bodies
of knowledge provide some quantifiable data concerning the minimum coverage called for by each
discipline for each topic. However, they do not provide information that is sufficient to permit any useful
formal calculation of the relative emphasis each discipline places on a given topic.

To obtain useful indications of the relative emphasis each discipline places on a given topic, it is
necessary that we apply our best judgment as to how to integrate various hard and soft factors into a
meaningful metric. Hard factors are the numerical specifications found in the discipline-specific bodies
of knowledge. Soft factors include:

• Differences in the perspective endemic to the various computing disciplines. Each of the five
computing disciplines has its own unique perspective and agenda, as characterized in Sections 2.2 and
2.3, above.

• Differences in the meanings attached to seemingly identical terms. While each computing discipline
includes coverage of various computing topics, the existence of unique discipline-specific
perspectives has the effect of attaching different meanings to the same term. For example, while each
discipline requires study of programming fundamentals, networking, operating systems, etc., the
precise set of knowledge and skills associated with these topics varies by discipline. This issue is
addressed more fully Sections 3.2 and 3.3, below.

• Differences in the latitude available to study optional topics. Despite efforts to make each of the five
discipline-specific curriculum reports international in scope, many are implicitly oriented to the
American system of defining undergraduate degree programs. In the American system, the amount of
technical study that can be required for a degree program in most subjects is significantly limited.
Such limitations affect all computing degree programs equally. In addition to this generic constraint,
some computing degree programs must devote a greater portion of their limited resources to a fixed
agenda, which in turn limits how much freedom is available to study computing topics that are not
required for the degree. For example, degree programs in computer engineering must devote
significant study to topics required by (a) the engineering profession, and (b) the CE emphasis on
hardware-related topics. This curtails how much study CE students may devote to optional
computing topics. Degree programs in information systems face similar limitations due the
requirement that IS students study business and organizational topics. The fact that not all computing
disciplines have equal flexibility places constraints on degree programs that are difficult to translate
in any precise or formal way into our schema of “min” and “max” topical coverage.

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 30 -

Due to the range and nature of these factors, the numerical values assigned in Table 3.1 reflect a synthesis
of hard and soft factors constructed by the CC2004 Task Force.

3.1.2. Using the table: Two related examples

To see how to use the table provided in Table 3.1, we will consider the fourth and fifth topics in the table:
“Operating Systems - Principles and Design” and “Operating Systems - Configuration and Use”. Both
topics concern operating systems. A reader who is not familiar with the terminology can consult the
glossary in Appendix A:

• Readers who are unsure what “operating systems” are can learn from the glossary. The term
“operating system” refers to a specific kind of software (such as Windows, Linux, UNIX, Mac OS,
etc.) which permits the human user to interact with a computer. It also enables a computer to manage
its resources (memory, disk drives, monitor screen, network interface, etc.) so that it can run whatever
application programs (word processor, spreadsheet, web browser, etc.) the user asks the computer to
run. In short, an operating system is software that runs “in the background”, permitting the computer
to operate in useful ways.

• A reader can also learn from the glossary that the former topic, “Operating Systems - Principles and
Design”, refers to foundational knowledge that enables a student to understand the tasks an operating
system must perform. It involves the various strategies and tactics that an operating system might
deploy do those things, the kinds of mechanisms that the operating systems designer can use to
implement those strategies and tactics, the strengths and weaknesses of various popular approaches,
and so on. In addition, we have the expectation that a student might complete a major programming
project, either creating an operating system “from scratch” or creating a significant enhancement to an
existing operating system.

• Similarly, the reader can learn from the glossary that the latter topic, “Operating Systems -
Configuration and Use”, is concerned with the practical mastery of the capabilities of mainstream
operating system products. Rather than focus on the underlying concepts and principles for designing
and implementing operating systems, this topic focuses on developing the student’s ability to make
full use of the various capabilities provided by existing operating systems. The goal is produce
students who know the strengths and limitations of two or more mainstream operating systems, know
how those attributes relate to both organizational policy and individual user needs, and know how to
use operating systems capabilities to satisfy user needs and implement organizational policy.

The reader can consult Table 3.1 to see how the various disciplines compare in the emphasis they place
on each of these two topics:

• For the former topic, “Operating Systems – Principles and Design”, we see that both IS and IT
programs give it less emphasis than do CE, CS, and SE programs. For typical degree programs in IS
and IT, both the “min” and “max” values are “1”, which indicates that students in those programs are
exposed to some basic concepts and terminology but typically do not study OS principles and design
in any substantive way. In contrast, CE, CS, and SE programs have higher “min” and “max” values,
indicating that they have higher minimum standards and a higher ceiling for student mastery. The
fact that a higher “min” value is shown for CS and SE (3 each) programs than is shown for CE (2)
indicates that the CS and SE curricula typically feature more coverage of OS principles and design
than do CE programs. The fact that a higher “max” value is shown for CS (5) than for CE and SE (4
each) indicates that CS curricula typically have more room in their program of study to permit in-
depth coverage of OS principles and design for those who desire it.

• For the latter topic, “Operating Systems – Configuration and Use”, we see a different pattern of
relative emphasis among the degree programs. While all degree programs provide substantive
experience in using and configuring operating systems, IT programs have the highest “min” and

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 31 -

“max” values (5 each). This indicates that IT programs focus their coverage of OS explicitly on
configuration and use. It also indicates IT programs expect all their students to obtain significant
capability in this area. The other degree programs have weaker minimum expectations that are
comparable to each other. There is slightly more room in CS and SE programs for optional mastery
of this topic than in CE and IS programs, but all place less emphasis on OS configuration and use
issues than do IT programs.

The comparison provided in Table 3.1 allows us to conclude that a student who wants to understand the
principles and design of operating systems will not be well served by IS and IT programs, will be better
satisfied by CE, CS, or SE programs, and will have the greatest opportunity for in-depth study in CS
programs. In contrast, a student who is interested primarily in the practical configuration and use of
operating systems will be best served by an IT program, as each of the other degree programs provide a
substantive foundation in practical OS use but less opportunities for in-depth mastery in this area. A
student wishing to pursue both OS topics would likely gravitate toward a CS or SE degree program,
where he or she will sacrifice depth with respect to practical application to obtain a better balance of
principles and application.

3.2. Degree outcomes: Comparing expectations of program graduates

The previous section provides a comparative view of the emphasis of study in the major kinds of
computing degree programs. This section provides a comparative view of the performance capabilities
expected of the graduates of each kind of degree program. While the previous section summarizes what a
student will study, this section summarizes the expectation of the student after he or she graduates and
begins a career.

Table 3.2 lists 70 performance capabilities across some 11 categories. For each capability, each discipline
is assigned a value from 0 to 5. The value 0 represents no expectation whatsoever and the value 5
represents the highest relative expectation. It shows the particular ways in which, in general terms:

• Computer engineers should be able to design and implement systems that involve the integration of
software and hardware devices.

• Computer scientists face expectations that range from theoretical work to software development.

• Information systems specialists should be able to analyze information requirements and business
processes and they should be able specify and design systems that are aligned with organizational
goals.

• Information technology specialists face high expectations with respect to using technology and to the
planning, implementation and configuration of computing infrastructure.

• Software engineers should be able to design and implement large-scale software systems.

In contrast to Table 3.1, which summarizes the inputs provided to students by degree programs, Table 3.2,
focuses on outputs, summarizing the relative capability expectations of graduates.

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 32 -

Table 3.2. Relative Performance Capabilities of Computing Graduates by Discipline

Area Performance Capability CE CS IS IT SE

Prove theoretical results 3 5 1 0 3
Dev. solutions to prog’ing problems 3 5 1 1 3
Develop proof-of-concept programs 3 5 3 1 3

Algorithms

 Determine if faster solutions possible 3 5 1 1 3

Manage web sites 2 2 4 5 2
Create e-commerce software 2 3 4 5 4
Create multimedia systems 2 3 4 5 3
Develop health related applications 3 3 3 2 5
Create e-learning systems 1 2 5 5 3
Develop business applications 1 3 5 4 3

Application infrastructure

 Evaluate new forms of search engine 2 4 4 4 4

Design a word processor 3 4 1 0 4
Use word processor features well 3 3 5 5 3
Train and support word processor 2 2 4 5 2
Design a spreadsheet 3 4 1 0 4
Use spreadsheet features well 2 2 5 5 3

Application programs

 Train and support spreadsheet users 2 2 4 5 2

Do small-scale programming 5 5 3 3 5
Do large-scale programming 3 4 2 2 5
Do systems programming 3 4 1 2 4
Develop new software systems 3 4 3 1 5
Create safety-critical systems 4 3 0 0 5

Computer programming

Manage safety-critical projects 3 2 0 0 5
Design embedded systems 5 1 0 0 1
Implement embedded systems 5 2 1 1 3
Design computer peripherals 5 1 0 0 1
Design complex sensor systems 5 1 0 0 1
Design a chip 5 1 0 0 1
Program a chip 5 1 0 0 1

Hardware and devices

 Design a computer 5 1 0 0 1

Create a software user interface 3 4 5 4 4
Produce graphics or game software 2 5 0 0 5

Human-computer
interface

Design a human-friendly device 4 2 0 1 3
Define information system 2 2 5 4 2
Design information systems 2 3 5 4 3
Implement information systems 3 3 4 3 5
Train users to use information systems 1 1 4 5 1

Information systems

 Maintain and modify information 3 3 5 5 3

Design a database system 2 5 1 0 4
Use a database system 2 2 5 5 2
Implement information retrieval 1 5 3 3 4
Select database products 1 3 5 5 3
Configure database products 1 2 5 5 2
Manage databases 1 2 5 5 2

Information management
(Database)

 Train and support database users 2 3 5 5 3

Develop corporate information plan 1 1 5 3 1
Develop computer resource plan 2 2 5 5 2
Schedule/budget resource upgrades 2 2 5 5 2
Install/upgrade computers 4 3 4 5 3

IT resource planning

 Install/upgrade computer software 3 3 4 5 3

Design auto-reasoning systems 2 4 0 0 2
Implement auto-reasoning systems 2 4 0 0 5
Implement intelligent systems 4 4 1 0 4

Intelligent systems

 Implement information retrieval 2 3 5 3 4

Design network configuration 4 4 3 2 3
Select network components 2 2 4 5 2
Install computer network 2 1 3 5 2
Manage computer networks 3 3 3 5 3
Implement communication software 5 4 1 0 4
Manage communication resources 1 0 3 5 0
Implement mobile computing system 5 3 0 0 3

Networking and
communications

 Manage mobile computing resources 3 2 2 4 2

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 33 -

3.3. International considerations
The CC 2001 activity has benefited from international input. This provides assurances that the best
advice was being used t guide developments and this in turn gives confidence about the international
competitiveness of graduates both in terms of their skills and of their outlook. Of course, in turn the
Computing Curricula reports serve as important points of reference for degree programs in other
countries.

In seeking to provide advice and illustrations that would have international appeal we can claim some
success and some interesting points of comparison arose. Very naturally there are differences in the
structure of the academic year, in the emphasis given to the study of computing within a degree program
(in the UK, for example, almost all classes will be oriented toward computing), in the quality control
mechanisms, and so on. In addition to these it was noted that:

• In the US, there is a very strong sense of a core for each discipline. The intent of this is to capture
those elements of a discipline considered fundamental and which all students of that discipline should
fully understand. This has benefits in terms of understanding the abilities of graduates and it
facilitates transfer between institutions. The argument and agreement over core tends to result in the
emergence of strong discipline definitions and clear understanding of the degree titles

• The core idea is far less prominent in countries such as the UK, where degree titles function as strong
marketing opportunities. As a result, by US standards, a vast number of degrees exist with a rich
variety of titles that reflect different emphases and different career opportunities. In this context,
guidance and quality issues associated with degrees are taken care of by criteria such as those
outlined in Section 3.6

3.4. The pace of change in academia: Disciplines and available degrees
As discussed previously, the landscape of the computing disciplines has undergone dramatic change
because of the explosion of computing during the 1990s. The computing field has evolved to the point
that we are seeing the emergence of degree programs focused on the challenges that now confront both
the computing profession and our computing-dependent society as a whole.

At many colleges and universities, the evolution of computing discussed in Chapter 2 does not reflect the
kinds of degree programs offered. This is because it is the nature of many institutions to be conservative,
and because the complex nature of academic degree programs means that it is difficult to implement
significant changes rapidly. Thus, at some colleges and universities the choices of computing degree
programs still looks more like the “pre-1990s” view shown in the top portion of Figure 2.2 than the “post-
1990s” view shown at the bottom of Figure 2.2. This discrepancy between the current landscape of
computing disciplines and the offerings at a particular college or university is a reflection of the fact that
the pace of change in computing is quite rapid while the pace of change in academic institutions generally
is quite slow.

This natural institutional lag can create problems for students who are trying to choose a computing-
related degree program that fits their interests and goals. It can also create problems for educators who
are trying to ensure that their educational programs are providing up-to-date programs that serve their
constituents.

We can make an important observation. Looking at the development of computing over the last twenty or
so years, one can observe that there has been a dramatic shift in emphasis towards interaction (and
perhaps away from the study of the algorithm). We can view the move towards interaction as an
important mark of success; it highlights the fact that people are involved in using and interacting with

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 34 -

them far more than in the early days. It is very natural therefore that new programs of study should
emerge to reflect that. The emergence of IT ands IS programs is part of that. Indeed, there is scope for an
even richer variety of possibilities.

The Joint Task Force of this report estimates that as of May of 2004, the approximate number of
programs in existence for each discipline worldwide is approximately as follows: 800 for computer
engineering programs, 4000 for computer science programs, 200 information technology programs, and
200 software engineering programs. For information systems, the question is more complicated because
degree programs associated with the information systems agenda have many different names; our best
estimate is that approximately 2000 information systems programs exist. The numbers above are subject
to verification. However, they do provide a measure of difference in the size and scope of each
discipline. In addition, many computing-related degree programs use other names for their degrees. A
few of these programs focus on special niches in computing; others are hybrids that combine features of
the major kinds of degree programs.

A key issue in terms of institutional lag may lie in the ability of readers of this report to recognize it. In
very general terms, there are usually metrics or marks of quality that we tend to look for. For instance

• Involvement of industrialists in advisory boards and importantly students in committees that vet
programs

• Quality control mechanisms operated by institutions and these really ought to involve external experts

• Employment statistics of graduates which will be related to the reputation of graduates and of the
institution

• Accreditation of degrees provides a mark of quality and will address issues such as the currency of
the program of study

Beyond this, there are additional comments we can make, which vary across the five the major computing
disciplines. We summarize these below.

3.4.1. Computer engineering

The change from the “pre-1990s view” of computing to the “post-1990s view” involves the emergence of
computer engineering from within electrical engineering. Typically, both kinds of programs exist in the
same academic department. Thus, the change we described earlier is an evolutionary change in program
stature and emphasis, not the creation of a new computing discipline. Although not true on the
international stage, in the US there has always been a single home for those who study computer
hardware. It used to be electrical engineering. It has become computer engineering. At many
universities, the change from the “pre-1990s” to “post-1990s” view has already taken place. However,
even some of the best schools do not offer a separate computer engineering program. At some schools,
electrical engineering and computer science reside in the same school, and computer engineering becomes
a natural merging of interests among faculty in those two disciplines.

There are notably fewer programs in computer engineering than in computer science or information
systems. In the US, this is because most American colleges do not offer engineering programs of any
kind. American engineering programs reside only in relatively large universities that can meet the special
requirements of the professional engineering community. We do not expect this to change significantly in
the future.

3.4.2. Computer science

There are far more degree programs in computer science than in any other computing discipline. Almost
all colleges and universities offer a CS degree. To some extent, this is an historical artifact: computer

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 35 -

science was the only substantive computing discipline that focused explicitly on software development
when academic computing degree programs emerged in the 1970s. When most colleges created their
computing degree programs, computer science was the only choice that had strong ties to math, science,
and/or engineering. (IS programs developed around the same time, but their primary ties were to business
schools.)

The increased diversity we see in the post-1990s computing disciplines is fairly localized in areas that
affect computer science. The new computing disciplines target career areas that graduates of CS
programs traditionally filled. Because there are more programs in computer science than in any other
computing discipline, and because the newer computing disciplines target students who would otherwise
likely be computer science majors, computer science, perhaps, has the most to lose as new computing
disciplines emerge.

Currently, an ongoing discussion exists regarding the relationship between what computer science
programs teach and what most graduates of computer science actually do in their careers. To understand
this discussion, it is necessary to review the characterization of computer science provided in Section
2.3.2. The work of computer scientists falls into three categories: developing effective ways to solve
computing problems; devising new ways to use computers; and designing and implementing software.
Let us consider what is involved in a career path in each area:

• Career Path 1: Developing effective ways to solve computing problems. This refers to the application
of computer science theory and knowledge of algorithms to ensure the best possible solution of
computationally intensive problems. As a practical matter, a career path in this area typically requires
graduate work to the Ph.D. level, followed by a position in a research university or industrial R&D
laboratory.

• Career Path 2: Devising new ways to use computers. This refers to innovation in the application of
computer technology. A career path in this area can involve advanced graduate work, typically to the
Ph.D. level, followed by a position in a research university or industrial R&D lab, or it can involve
entrepreneurial activity such as was evident during the “dot com” boom of the 1990s, or it can
involve a combination of the two.

• Career Path 3: Designing and implementing software. This refers to the work of software
development. Nowadays we might interpret this to include aspects such as web development,
middleware, security issues, and mobile computing. The majority of computer science graduates
choose this career path. While a bachelor’s degree is generally sufficient for entry into this kind of
career, many software professionals return to school to obtain a terminal master’s degree. (Rarely is a
doctorate involved.) Career positions occur in a wide variety of settings, including large or small
software companies, large or small computer services companies, and large organizations of all kinds
(industry, government, banking, healthcare, etc.). The discipline of software engineering also
educates its students for this career path.

Computer science programs intend to prepare students for these three career paths. In addition, the
following is a fourth career path CS programs do not target but nonetheless draws many computer science
graduates.

• Career Path 4: Planning and managing organizational technology infrastructure. This refers to the
kind of work for which IT might also educate students, with an emphasis on business.

Of these four career paths, the first two are important elements of the identity of computer science and are
the kind of career paths that many computer science faculty wish to see their students choose. As a
practical observation, only a small minority of the students who earn computer science degrees chooses
them. For these first two career paths, a strong program in computer science is clearly the preferred
choice.

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 36 -

The latter two career paths are the focus of debate. These careers draw the overwhelming majority of
computer science graduates. They are also the focus of new computing disciplines (software engineering
and information technology, respectively), which have come into being as an additional and more focused
alternative to computer science programs at preparing students for these career paths. In addition, a
significant number of graduates in information systems has over the years selected organizational roles
that are very similar to these career paths. As yet, no resolution has occurred to the debate about the
relative value of computer science programs vs. software engineering and information technology
programs. However, the issues that arise in the debate are well defined. Because software engineering
and information technology programs have different goals, the issues discussed are somewhat different.
We discuss the relevant issues viz. computer science in the subsequent subsections devoted to software
engineering and information technology, respectively

As computer science programs face growing competition from degree programs in software engineering
and information technology, students interested in the latter two career paths will have more choices than
ever before. For the latter two careers paths, we should evaluate the relative value of computer science
programs in the light of emergence of degree programs in the two new computing disciplines.

3.4.3. Information systems

The difference between the “pre-1990s” and “post-1990s” role of information systems concerns the
expanded role of information technology in organizations of all kinds. Historically, information systems
programs prepared students to work in the business world. Their preparation included a foundation in
accounting, finance, and other core business areas. On the technology side, IS students could expect to
become familiar with computer applications related to these traditional business areas, especially database
management systems, and with spreadsheets and other off-the-shelf software products that have broad
utility to business people. In addition, they learned how to develop functionally oriented applications.

In the “post-1990s” world, an up-to-date IS program is focusing on the broader role of IT-enabled
information utilization and business processes for a wide range of organizations. What information does
the enterprise need? How do we generate that information? Does the information go to the people who
need it? Do we present the information to them in ways that allow them to use it? Have they structured
the organization correctly to use technology in the efficient ways? Have they properly designed the
business processes of the organization? Does the organization fully utilize the communication and
collaboration capabilities of information technologies? Is the organization capable of adapting quickly
enough to changing external circumstances? These are the important issues that organizations
increasingly rely on IS people to address.

Thus, institutional lag is relevant to an IS program insofar as we consider whether it has expanded its
focus beyond just the “pre-1990s” focus on narrowly defined functional business processes. That
traditional role is still there, but it is no longer sufficient. The meaningful question may be, “Has an IS
program broadened its scope to include an integrated view of the organization with complex information
needs and high-level dependency on IT-enabled business processes?” Web-based distributed
technologies provide infrastructure for globally connected and ubiquitously accessible organizations, and
modern IS programs have to address the needs of such organizations. IS students must learn how to
assess and evaluate organizational information needs, specify information requirements, and design
practical systems to satisfy those requirements. If a program instead focuses only on the design and
development of narrow functional applications and the use of personal productivity tools, it is seriously
behind mainstream IS programs.

In addition to these concerns, IS faces challenges from the emergence of IT programs, much as CS
programs do. Traditionally, many graduates of IS programs have functioned in roles that are similar to

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 37 -

the roles for which IT programs explicitly prepare their students. As the number of IT programs grow,
many IS departments will have to reevaluate how to serve and define their core audience.

3.4.4. Information technology

In the last few years, degree programs in information technology have emerged and developed to such an
extent that they now should be an important part of any discussion of computing degree programs. As
summarized in Section 2.3.4, IT programs exist to produce graduates who know how to make information
technology work in a wide range of settings. Organizations of all kinds have become dependent on
networked computing infrastructure to such an extent that they cannot function without that infrastructure.
IT people are prepared to select, manage, and maintain that infrastructure, ensuring that it meets
organizational needs. They also create digital content for that infrastructure and take care of IT-support
needs of individuals who use it.

The emergence of IT programs represents a grass-roots movement by computing educators to respond to
the very real needs of both their local communities and their students. IT programs exist, not because
computer science or information systems programs failed to “do their job”, but because those disciplines
each define themselves as having a different job. IT programs exist because nobody was seriously trying
to do the job that IT programs are doing.

Only a few years ago, computing educators in the US were not familiar with IT degree programs,
although such programs have existed for many years elsewhere. Today, many such programs are
emerging and we expect to see this number increase further in the years to come. It was not until 2001
that college-level IT educators began to organize, and in the short period since, they have formed a
professional organization, held several conferences, and have made substantive progress in developing
curriculum and accreditation guidelines for IT degree programs. It is no exaggeration to say that IT
programs have exploded onto the scene in the US.

Some people question whether IT programs are a passing fad. Others ask if IT programs are too technical
in nature to deserve the status of an academic discipline. People asked similar questions about computer
science more than thirty years ago. Yet within a few years, virtually all colleges began to offer CS
degrees. We expect to see similar results with respect to IT. They address an important need that is a
widespread throughout society. To the extent that organizations rely on computer technology, the IT
discipline has a key role to play.

There are two important issues here:

• Rigor: Planning and managing an organization’s IT infrastructure is a difficult and complex job that
requires a solid foundation in applied computing, as well as management and people skills. Those in
the discipline require special skills – in understanding, for example, how to compose and structure
software systems and to contrast their strengths and weaknesses. There are important software
systems concerns such as reliability, security, effectiveness, and efficiency for their intended purpose,
and importantly usability that are all vital. These topics are difficult and intellectually demanding.

• Acceptance: The IT discipline is “the new kid on the block” and, as a result, faces problems of
acceptance among the more established disciplines. This is a natural phenomenon, and it will take
time and experience for those in the more established computing disciplines to recognize the value
that the IT discipline provides. As IT establishes itself as a discipline with its own intellectual core, a
rigorous curriculum and accreditation guidelines, acceptance and respect will come.

In the short term, these two issues combine to present a potential danger. At many institutions,
administration is motivated to see an IT program created to respond to community needs and to provide
more choices for prospective students. Whenever an institution creates an IT program, it must take
special care to ensure that it implements the program properly. One must ensure that the people who are

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 38 -

responsible for an IT degree program recognize IT’s importance and are excited about creating high-
quality educational experiences for IT students.

3.4.5. Software engineering

The development of SE is a response from within the CS community to a very real problem. While CS
programs have shown that they can produce students who have sound skills in programming
fundamentals, many believe that they have not been successful at reliably producing graduates who can
properly understand and develop software systems; in the extreme they have to engineer rigorously large
software programs. In the post-1990s world, many software projects are large and complex, and there is a
pressing need for software engineers who can apply professional practices to ensure that the software is
reliable and that they produce it on schedule and within budget. We know that major software companies
have found it necessary to develop their own in-house educational programs to compensate for the
capability shortcomings of CS graduates. SE programs represent an effort from within CS to make the
undergraduate experience more successful at providing students with an adequate set of knowledge and
skills for careers as software professionals.

As a practical matter, CS and SE degree programs have much in common. Both disciplines recognize
that the subject matter of computing has grown to the point where no single degree program can expect its
students to grasp the entire field. Thirty years ago, it was reasonable to expect CS undergraduates to
“study everything”; now, there is too much of it to fit in a four year (or even five year) program of study.

Both CS and SE curricula begin by requiring a foundation in programming fundamentals and basic CS
theory. They diverge in what they focus on beyond those core elements. CS programs tend to keep the
core small and then expect students to specialize selectively in one or two of areas of CS concentration
(such as systems, networking, database, artificial intelligence, theory, etc.). In contrast, SE programs
generally provide less freedom of choice about advanced computer science topics, and instead expect
students to focus on a range of topics that are essential to the SE agenda (problem modeling and analysis,
software design, software verification and validation, software quality, software process, software
management, and so on). In addition, while both CS and SE programs typically require students to
experience team project activity, SE programs tend to involve the students in significantly more of it, as
effective team processes are essential to effective SE practices. A key requirement from the SE report is
that SE students should learn how to build software that is genuinely useful and usable by those from
another discipline.

Two questions about how SE programs will develop remain unanswered:

• To what extent will degree programs in SE emerge from within CS departments as a side-by-side
alternative to the traditional CS degree? Some disagreement exists in this respect surrounding the
nature and amount of rigorous SE experience that a robust undergraduate education should have. We
can view the development of SE programs as an effort to broaden the appeal of computing degrees
within an institution.

• To what extent will the legal implications of using the word “engineering” force American colleges
and universities to choose a different name for their SE degree programs? The professional
engineering community is protective of its identity and the word “engineering” looms large in that
identity. Software engineering is fundamentally different from the other engineering disciplines (due
to the intangible nature of software, and to SE’s focus on human processes rather than the laws of
physics, for example). Yet the traditional strength of engineering (robust methods for creating
reliable artifacts) is at the core of the SE agenda. It will take some time for the American engineering
community itself to recognize how SE is fundamentally different from other engineering disciplines,
and perhaps even longer for reason to prevail about the use of the word “engineering”. In the U.K.,
the computing and engineering communities came to a sensible understanding about this issue

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 39 -

decades ago. America lags behind in this case, as it has yet to reach a reasonable accommodation to
the situation.

It appears that most CS students anticipate that their professional careers will involve doing software
development work, while relatively few see their future on the research and innovation side of CS. We
expect that, if substantive SE degrees were available as an option for CS students, many (perhaps most)
CS students would select it. At present, that choice is not widely available. There are now about 20 SE
degree programs in America. We expect this number to increase steadily, although not at the same
explosive rate that we have seen from IT programs.

Within CS degree programs, the robustness of SE education varies widely. Most CS degree programs
provide one or more SE courses. In some CS programs, SE courses are optional; in many others, they are
mandatory. In addition, some CS programs offer SE as one of several areas of CS concentration. When
evaluating CS programs that provide such an option, it is important to look closely at how rigorous that
option is. Some faculty feel that taking one or two SE is sufficient; others believe that one or two courses
cannot offer the kind of professional preparation that a dedicated SE program can.

3.5. The pace of change in the workplace: Degrees and career opportunities
Just as it takes time for academic institutions to adapt, it also takes time for industry and other players in
the computing workplace to do the same. As a result, most job opportunities will reflect the “pre-1990s”
model shown at the top of Figure 2.3. In other words, because new computing disciplines are new, no
one yet expects people to have those qualifications.

With respect to CE, the new disciplines are not much of an issue. In both the “pre-1990s” and “post-
1990s” landscape, it is clear where people go for expertise in hardware and related software. During the
1990s, CE adopted this role from EE; the change is largely complete. CE, like EE, is part of the
professional engineering community, and this has implications for where one can earn a CE degree. Not
every university has an engineering program. Employers looking for people with a CE background want
graduates of an accredited CE program.

It is also clear where people look for expertise at the interface between the information needs of business
and computing. IS occupies that role in both the “pre-1990s” and “post-1990s” landscape. It is essential
that those who pursue this path make sure that they find an IS program that continues to update its vision
and has an emphasis that fits the interests of the prospective student. For IS, the situation is complicated
by the range of names such programs go by.

The new computing disciplines (SE and IT) raise questions primarily for people who would otherwise
major in CS (viz. both SE and IT) or IS (viz. IT). At present, most people who function as serious
software engineers have degrees in CS, not in SE. In large part, this is because CS degrees have been
available for 30 years and SE degrees have not. The story is similar for people working in the IT
profession: most come from CS or IS programs. It is far too soon for someone who wants to work as a
software engineer or as an information technology practitioner to be afraid that they won’t get the chance
to do so if they don’t graduate from a degree program in one of those new disciplines. In general, a CS
degree from a respected program is still the most flexible of degrees, as it can open doors into the
professional worlds of CS, SE, IT, and (in some cases) CE. Similarly, a degree from a respected IS
program permits entry into the worlds of IS and IT.

This situation presents ambiguity to students who are trying to determine what discipline to study and to
educators who are trying to decide how to serve their constituents. We identify some factors that
educators should consider in Chapter 4. We focus on the factors students should consider in the Guide,
which is the second part of this report and is also available as a standalone document.

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 40 -

3.6. Shared identity: Common requirements of computing degrees
As we have seen, each of the major computing disciplines has its own character. Each one is somewhat
different from its siblings in emphasis, goals, and capabilities of its graduates. At the same time, they
have much in common. Therefore, any reputable degree program in computing should include each of
the following elements.

1) Essential and foundational underpinnings of the discipline. These may be abstract, e.g., formal theory
rooted in mathematics, or they may be applied, e.g., professional values and principles; often, they
will include both abstract and applied elements. Regardless of their form or focus, the underpinnings
must highlight those essential aspects of the discipline that remain unaltered in the face of
technological change. The discipline’s foundation provides a touchstone that transcends time and
circumstance, giving a sense of permanence and stability to its educational mission. Students must
have a thorough grounding in that foundation.

2) Foundation in the concepts and skills related to computer programming. There are three layers to this
foundation:

a) An intellectual understanding of, and an appreciation for, the central role of algorithms;

b) Fundamental programming skills to permit implementation of algorithms in software;

c) Software engineering principles and technologies to ensure that software implementations are
robust, reliable, and appropriate for their intended audience.

3) Understanding of the possibilities and limitations of what computer technology (software, hardware,
and networking) can and cannot do. This foundation has three levels:

a) An understanding of what current technologies can and cannot accomplish;

b) An understanding of the limitations of computing, including the difference between what
computing is inherently incapable of doing vs. what may be accomplished via improved computer
technology in the future;

c) The impact on individuals, organizations, and society of deploying technological solutions and
interventions.

4) Understanding of the concept of the lifecycle, including the significance of its phases (planning,
development, deployment, and evolution), the implications for the development of all aspects of
computer-related systems (including software, hardware, and human computer interface), and the
relationship between quality and lifecycle management.

5) Understanding of the essential concept of process, in at least two meanings of the term:

a) Process as it relates to computing, especially program execution and system operation;

b) Process as it relates to professional activity, especially the relationship between product quality
and the deployment of appropriate human processes during product development.

6) Study of advanced computing topics that permits students to visit and understand the frontiers of the
discipline. This is typically be accomplished via explicit inclusion of learning experiences that lead
students from elementary topics to advanced topics or themes that pervade cutting-edge
developments.

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 41 -

7) The identification of and acquisition of skill sets that go beyond technical skills. Such skill sets
include interpersonal communication skills, team skills, and management skills as appropriate to the
discipline. To have value, learning experiences must build such skills (not just convey that they are
important) and teach skills that are transferable to new situations.

8) Exposure to an appropriate range of applications and case studies that connect theory and skills
learned in academia to real-world occurrences to explicate their relevance and utility.

9) Attention to professional legal and ethical issues such that students evidence attitudes and priorities
that honor, protects, and enhances the ethical stature and standing of the profession.

10) Demonstration that each student has integrated the various elements of the undergraduate experience
by undertaking, completing, and defending original work in a capstone experience.

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 42 -

Chapter 4: Conclusion

This chapter is under development.

Its content will alert the reader to issues and considerations as outlined below.

Its length should not exceed six pages.

4.1. Institutional considerations

4.2. Curricula and accreditation

4.3. Future considerations

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 43 -

Part Two

A Guide to Undergraduate Degree Programs in
Computing

[This 12-page Guide is under development.]

Summary

1. Introduction

1.1 Purpose

1.2 Scope

2. The Computing Disciplines

2.1. The big arena: What is computing?

2.2. Descriptions of the computing disciplines

 2.2.1. Computer engineering

 2.2.2. Computer science

 2.2.3. Information systems

 2.2.4. Information technology

 2.2.5. Systems engineering

2.3. Snapshots: A graphical comparison of the computing disciplines

 2.3.1. Computer engineering

 2.3.2 Computer science

 2.3.3. Information systems

 2.3.4. Information technology

 2.3.5. Software engineering

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 44 -

3. Student Considerations

3.1. The Challenges and the Excitement of Computing

3.2. Career Opportunities

3.3. The impact of degree choice on your future

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 45 -

Appendix A

Glossary of Terms

[Under development]

STRAWMAN DRAFT – Computing Curricula 2004 – STRAWMAN DRAFT

 - 46 -

References

[Under development]

